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SUMMARY

Approximately 15 genes have been directly associ-
atedwith skin pigmentation variation in humans, lead-
ing to its characterization as a relatively simple trait.
However, by assembling a global survey of quantita-
tive skin pigmentation phenotypes, we demonstrate
that pigmentation is more complex than previously
assumed, with genetic architecture varying by lati-
tude. We investigate polygenicity in the KhoeSan
populations indigenous to southern Africa who have
considerably lighter skin than equatorial Africans.
We demonstrate that skin pigmentation is highly heri-
table,butknownpigmentation loci explainonlyasmall
fraction of the variance. Rather, baseline skin pigmen-
tation is a complex, polygenic trait in the KhoeSan.
Despite this, we identify canonical and non-canonical
skin pigmentation loci, including near SLC24A5,
TYRP1, SMARCA2/VLDLR, and SNX13, using a
genome-wide association approach complemented
by targeted resequencing. By considering diverse,
under-studied African populations, we show how the
architecture of skin pigmentation can vary across hu-
mans subject todifferent local evolutionarypressures.

INTRODUCTION

Skin pigmentation is one of the most strikingly variable and

strongly selected phenotypes among human populations, with
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darker skin observed closer to the equator and lighter pigmenta-

tion observed at high latitudes (Sturm and Duffy, 2012).

Researchers have hypothesized that variable exposure to ultravi-

olet radiation (UVR) creates opposing selective forces for

vitamin D production and folate protection, resulting in variable

melanin production and global pigmentation differentiation

(Chaplin and Jablonski, 2009; Jablonski and Chaplin, 2010).

Skin pigmentation differences at similar latitudes and UV expo-

sures indicate that additional evolutionary forces, such as assor-

tative mating, drift, and epistasis, are also likely to have affected

global skin pigmentation (Po�spiech et al., 2014; Wilde et al.,

2014). While �171 genes have been implicated in variability

across model organisms (e.g., the Color Genes database:

http://www.espcr.org/micemut/), only �15 genes have been

associated with skin color differences in humans (Table 2). The

relative paucity of loci identified from genome-wide association

study (GWAS) efforts has led to the characterization of pigmenta-

tion variation as relatively simple, with only a handful of SNPs be-

inghighlypredictiveof skin, eye, andhair color acrosspopulations

(Hart et al., 2013; Spichenok et al., 2011; Walsh et al., 2013).

Despite Africa being home to the greatest range of pigmenta-

tion globally, remarkably few genetic studies of pigmentation

have been published to date in continental Africans (Crawford

et al., 2017; Jablonski and Chaplin, 2014; Relethford, 2000).

Instead, the genetic basis of skin color has primarily been stud-

ied in Eurasians and admixed African Americans (Beleza et al.,

2013a, 2013b; Candille et al., 2012; Sturm and Duffy, 2012;

Sulem et al., 2007, 2008); selective sweeps in high-latitude pop-

ulations have been interpreted as resulting from strong environ-

mental selection pressure. For example, the derived Ala111Thr

allele (rs1426654) of SLC24A5 that swept to near fixation in



western Eurasian populations confers the largest known effect

on skin color variability (Beleza et al., 2013b; Lamason et al.,

2005). Loci in/near SLC45A2, GRM5/TYR, and APBA2/OCA2

also have divergent allele frequencies between Europeans and

Africans, with large lightening effects in Europeans (Beleza

et al., 2013b; Norton et al., 2007). Smaller effects, including

associations in/near MC1R, TYR, IRF4, and ASIP, contribute to

the relatively narrow variation within Europeans (Sulem et al.,

2007, 2008). Light skin pigmentation in Eurasians arose through

both convergent evolution (e.g., rs1800414 in OCA2 in East

Asians) and similar selective sweeps (e.g., KITLG) (Miller et al.,

2007; Yang et al., 2016). Because African populations have

been under-studied, the genetic architecture and higher vari-

ability of skin pigmentation is poorly understood.

Strong positive selection acting on skin pigmentation has

resulted in large effects that explain a large fraction of heritable

variation. For example, a previous study in recently admixed

Cape Verdeans with European and West African ancestors

showed that only 4 loci explain 35% of the variation in skin

pigmentation (Beleza et al., 2013b). In contrast, complex traits

such as height and schizophrenia require �10,000 independent

SNPs derived from GWAS of >100,000 individuals to build

predictors that explain �29% and�20% of the variance in inde-

pendent cohorts, respectively (Ripke et al., 2014; Wood et al.,

2014). Previous studies of positively selected traits—such as

pigmentation, high-altitude adaptation, and response to patho-

gens—have repeatedly produced larger effect sizes than com-

plex common disease; these large-effect loci have typically

been discovered with relatively small sample sizes (i.e., approx-

imately hundreds of individuals) compared to common diseases

(Genovese et al., 2010; Kenny et al., 2012; Yi et al., 2010). It

is noteworthy that effect size estimates of significant polymor-

phic GWAS loci tend to be directionally consistent across

populations (Carlson et al., 2013), but that aggregate prediction

accuracy varies across populations (Martin et al., 2017).

Striking skin pigmentation variability among African popula-

tions has been underappreciated in genetic studies (Jablonski

and Chaplin, 2014; Relethford, 2000). Light skin pigmentation is

observed in the far southern latitudes of Africa among KhoeSan

hunter-gatherers andpastoralists in andnear theKalahari Desert.

TheKhoeSan are unique in their early divergence fromother pop-

ulations, likely dating back at least �100,000 years (Schlebusch

et al., 2012; Veeramah et al., 2012); they exhibit extraordinary

levels of genetic diversity and low levels of linkage disequilibrium

(LD) (Hennet al., 2011). Previousworkpoints to southernAfrica as

the point of origin for modern humans (Henn et al., 2011; Tishkoff

et al., 2009), but it is unknown whether moderate to light skin

pigmentation in the different KhoeSan populations is an example

of convergent evolution with northern Europeans and Asians or

reflects the ancestral human phenotype. Previous studies have

noted different pigmentation allele frequencies between the

Juj’hoansi San and other Africans, but these have been based

on fewer than 7 individuals from the former population without

measured phenotypes (Berg and Coop, 2014; Norton et al.,

2007). We use the term ‘‘KhoeSan’’ to refer to a diverse array

of indigenous populations in southern Africa that carry

KhoeSan ancestry and speak Khoe, !Ui-Tuu, or Kx’a languages.

‘‘KhoeSan’’ is not accepted by all such communities; where
possible, we refer to populations by their specific ethnic name.

This grouping lumps together populations of different languages,

cultures, and variable genetic diversity.

Here, we report an evolutionary and genetic study of skin

pigmentation with a total of 465 genotyped KhoeSan individuals

(278 zKhomani San and 187 Nama), with targeted resequencing

at associated pigmentation loci and matched quantitative

spectrophotometric phenotype data (Table S4). The zKhomani

San are traditionally a Nju-speaking hunter-gatherer population

living in the southern Kalahari Desert, while the Nama are tradi-

tionally a Khoekhoe-speaking semi-nomadic pastoralist group

of KhoeSan ancestry. We investigate (1) the degree of polygenic-

ity and heritability of skin pigmentation, (2) the extent of pigmen-

tation variation explained by previously associated or canonical

pigmentation genes, and (3) novel pigmentation alleles contrib-

uting to variation in the zKhomani San and Nama populations.

RESULTS

We quantitatively phenotyped baseline skin color in 479 individ-

uals (277 zKhomani, 202 Nama; Figure S1 and Table S4) via nar-

row-band reflectometry to measure hemoglobin and melanin of

both the left and right upper inner arms (STAR Methods), with

M index = log10

�
1

% red reflectance

�

We sequenced and/or genotyped a subset of phenotyped

samples (Table S4 and STAR Methods). Skin pigmentation is

lighter in the KhoeSan than in the majority of other African pop-

ulations, with baseline upper-arm M index = 57.57 ± 10.12

(mean ± SD) in the zKhomani San. Baseline upper-arm pigmen-

tation in the Nama is slightly lower, with M index = 52.12 ± 8.93.

The zKhomani are on average significantly darker than the Nama

(p = 3.6e�10; Figure 1C), but the variance is not significantly

different (p > 0.05). For comparison, we aggregated quantitative

skin pigmentation across 32 globally diverse populations

(4,712 individuals) assayed with a DermaSpectrometer (DSM I

or DSM II) (Basu Mallick et al., 2013; Beleza et al., 2013b; Can-

dille et al., 2012; Coussens et al., 2015; Durazo-Arvizu et al.,

2014; Edwards et al., 2010; Norton et al., 2007) (Figures 1A

and 1B and Table S1). Only four African populations are available

for comparison; among these, only the Ghanians represent an

equatorial African population without recent admixture. Skin co-

lor is substantially darker in equatorial Ghanaians, whereM index

reaches a mean of 96.04 ± 10.94; M index for Cape Verdeans,

who have �40% European admixture on average, have slightly

lighter (55.39 ± 13.00, p = 5.6e�3) and considerably more vari-

able pigmentation (p = 1.9e�6) than the KhoeSan. Two other

populations living in South Africa, the Xhosa and admixed

Coloured populations, have respectively darker (M index =

67.1 ± 7.5) and similar (M index = 53.1 ± 8.5) pigmentation

compared to the KhoeSan populations (Coussens et al., 2015).

Evidence of IncreasedPolygenicity in Skin Pigmentation
among Equatorial Populations
We tested whether the correlation between absolute latitude and

pigmentation was significant with our large, quantitatively
Cell 171, 1340–1353, November 30, 2017 1341
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Figure 1. Distributions of Baseline Pigmentation in Globally Diverse Populations

(A) Sample locations of skin pigmentation datasets where phenotypes were measured with a DSM I or DSM II.

(B) Violin plots of pigmentation distributions for 32 populations from 8 studies ordered by latitude; absolute latitudes provided on the right. Corresponding

datasets are colored as in (A). Table S1 provides summary statistics for each population. M indices are reflectance measures that approximate melanin content.

(C) A comparison of skin pigmentation distributions in zKhomani (top) and Nama (bottom) populations. Dashed gray lines and labels indicate meanM index for the

indicated other global populations.

(D) South African individuals in a household that exemplify the substantial skin pigmentation variability in the zKhomani and Nama populations. Picture taken with

consent for publication.

See also Table S1.
phenotypedsampleof global populations. Aspreviously observed

(Byard, 1981; Jablonski and Chaplin, 2010; Zaidi et al., 2017), we

find that skin pigmentation is strongly associated with absolute

latitude (R2 = 0.53, b = �1.18 on M index scale, p < 2e�16); pop-

ulations further from the equator have lighter skin pigmentation.

We next tested whether variance in melanin within populations

also varies across populations. Skin pigmentation has primarily
1342 Cell 171, 1340–1353, November 30, 2017
been studied in lightly pigmented European and East Asian

populations, where skin color varies minimally among individuals

(Figures1Aand1B). Less-studiedequatorial andadmixedpopula-

tions, including Melanesians, Ghanaians, Cape Verdeans, South

African admixed Coloured, and South Asians vary considerably

more in skin pigmentation (Figure 1B). We find that absolute lati-

tude is also significantly negatively associated with the standard
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Figure 2. Ancestry Components in the KhoeSan and Association with Pigmentation

(A) ADMIXTURE proportions at k = 7 for the zKhomani and Nama populations using Namibian San, Hadza, Sandawe, Maasai, Kenyan Bantu, South African (SA)

Bantu, Yoruba, Mozabite, Central European (CEU), and French populations as a reference panel.

(B) Associations between substantial k ancestry clusters and average melanin (M index) baseline pigmentation value in the combined zKhomani and Nama

populations. The Bantu and European components each constituteR 5% of the total KhoeSan ancestry on average and have significant associations in the best

multivariate model (p < 0.05).

See also Figure S2 and Table S2.
deviation in melanin (R2 = 0.41, p = 5.0e�5). Further, melanin dis-

tributions are heteroskedastic (i.e., the variance is not constant;

rather, it changes over the range of observed M index), with the

coefficient of variation, a standardized metric of phenotypic

dispersion, decreasing with increasing distance from the equator

(cv = s/m, R2 = 0.14, p = 0.03; Table S1).

A sign test comparing variances in lighter versus darker popula-

tion pairs within the same study indicates that populations with

lighter skin have significantly reduced phenotypic variance than

expected by chance (p = 2.01e�8). These results suggest that

there is reduced genetic heterogeneity and/or reduced variance

in the population distribution of causal effect sizes contributing

to lighter versus darker pigmentation. There is more than an order

ofmagnitude difference in variancebetween the lightest anddark-

est populations (i.e., Irish versus Ghanaian F = 0.03, p = 6.7e�23).

Europeans and East Asians have significantly less variation

than South Asians (F = 0.25, p = 1.06e�14 and F = 0.30, p =

1.27e�10, respectively; Figure 1B). Cape Verdeans with the high-

est quartile of European admixture have lighter, less variable skin

color than individualswith the lowestquartileofEuropeanancestry

(p = 4.28e�9, although notably, ancestry proportions are bimodal

across individuals). Among Melanesians, islands at similar lati-

tudes with more lightly pigmented individuals on average show

less variance than those with more darkly pigmented individuals

(e.g., one-sidedF test comparing varianceamongmore lightly pig-

mented New Britain individuals versus individuals from Bougain-

ville, p = 2.89e�9; Figure 1B). Among the zKhomani and Nama,
comparing individuals with primarily European admixture (>20%,

n = 124) to individuals with primarily Bantu admixture (>20%,

n = 91), we find significantly greater melanin variation among

KhoeSan individuals with more Bantu admixture (p = 1.33e�4).

Ancestry and Skin Pigmentation Variation in the
KhoeSan
The zKhomani San and the Nama have both experienced admix-

ture with neighboring darker-skinned Bantu-speaking groups

beginning �450 years ago, as well as with lighter-skinned Euro-

pean settlers who first arrived in the Northern Cape during the

late 18th century (Uren et al., 2016). We assessed these ancestry

proportions using unsupervised allele frequency clustering with

ADMIXTURE, as well as principal components analysis (PCA;

STAR Methods). At k = 3 ancestry components, we observe

distinct clustering between Europeans, Bantu-speaking and

West African populations, and KhoeSan populations; both the

Nama and the zKhomani have �75%–80% KhoeSan-specific

ancestry. For k = 7, which gives most stable ancestry estimates,

we observe a partitioning of the KhoeSan ancestry into ‘‘northern

Kalahari’’ ancestry shared with Juj’hoansi and a distinct south-

ern or circum-Kalahari ancestry present in the Nama and the

zKhomani. On average, in the zKhomani San, we find 55%north-

ern Kalahari KhoeSan ancestry, 21%southern Kalahari KhoeSan

ancestry, 11%European ancestry (common in Central European

[CEU] and French individuals), 12% western African ancestry

(common in Yoruba and Bantu-speaking populations), and
Cell 171, 1340–1353, November 30, 2017 1343



Table 1. Heritability Estimates Contrasting Baseline Skin Pigmentation with Tanning Status

Method Dataset SNPs N h2 (SE) baseline pigmentationa h2 (SE) tanning statusb

GCTA GRM genotype array 286,026 216 0.90 (0.15) 0.31 (0.19)

REAP GRM genotype array 286,026 216 0.97 (0.15) 0.41 (0.21)

KIBD genotype array NA 216 0.97 (0.16) 0.45 (0.22)

GCTA GRM exome 117,132 82 0.95 (0.26) 0.37 (0.37)

SOLAR pedigrees NA 477 0.96 (0.12) 0.19 (0.11)

SNP-based heritability estimates were computed with GCTA using GRMs calculated from SNP gentoypes, an admixture-corrected GRM computed

with REAP, and IBD segments. All models were unconstrained.

See also Figure S1 and Table S3.
aBantu and European admixture proportions were included as covariates.
bAge and sex were included as significant covariates for tanning status (wrist minus baseline underarm pigmentation).
2% attributable to other African populations (Tanzanian hunter-

gatherers, East African populations, and North African popula-

tions; Figures 2A, S2A, and Table S2). The Nama differ from

the zKhomani in their proportion of northern versus southern Ka-

lahari ancestry; they have, on average, 17% northern Kalahari

ancestry, 62% southern Kalahari ancestry, 9% European

ancestry, 10% western African ancestry, and 1% attributable

to other African populations. The western African fraction in

the Nama is significantly more variable among individuals

(p = 1.08e�5), resulting from recent Damara gene flow (Uren

et al., 2016). The partition of ancestry components occurs in

the same order and is correlated between ADMIXTURE and

PCA (Figures 2, S2A, and S2D–S2F).

In amultivariatemixedmodelwith the significant European and

Bantu admixture components, European and Bantu ancestries

are strongly correlated with light (b = �18.09, p = 2.9e�03) and

dark skin (b = 25.60, p = 1.8e�09), respectively. Together, we es-

timate that fixed admixture effects explained 34%of the variation

in skin color (adjusted R2); by comparison, 44% of pigmentation

variation inCapeVerdeans is explained by admixture effects (Be-

leza et al., 2013b). Marginal associations are shown in Figure 2B,

with pairwise ancestry correlations shown in Figure S2B. South-

ern Kalahari ancestry frequent in the Nama is significantly anti-

correlated with Bantu ancestry and is marginally predicted to

lighten skin, but not when modeled jointly with Bantu ancestry

in a multivariate model. Interestingly, the mean pigmentation of

Nama and zKhomani individuals with <90% KhoeSan ancestry

is not significantly different from individuals with >90% KhoeSan

ancestry (p=0.94), although thevariance is significantly greater in

more admixed individuals (admixture from either/both European

orBantu ancestries, p =2.2e�3). These results suggest thatwhile

admixture increases phenotypic variance, pigmentation alleles

on KhoeSan haplotypes contribute more to the overall heteroge-

neity than those on European or Bantu haplotypes. Consistent

with this result, we observe substantial skin pigmentation varia-

tion among related individuals,which, coupledwith highheritabil-

ity (see below), suggests a role for large effect sizes of alleles

contributing to pigmentation.

Skin Pigmentation Is Highly Heritable
We inferred narrow sense heritability for baseline skin pigmenta-

tion and tanning status in the KhoeSan with four methods: family

pedigrees ðh2pedigreeÞ, SNP-array-similarity matrices ðh2gÞ, iden-
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tity-by-descent (IBD)-sharing matrices ðh2IBDÞ, and exome

sequence variation (h2exome; Table 1). While pedigree-based

heritability estimates are not based on genetic data and there-

fore not strongly affected by admixture, we carefully considered

it for SNP-based estimates, as described previously (Beleza

et al., 2013b; Thornton et al., 2012; Zaitlen et al., 2013, 2014).

In each of the heritability estimates of baseline skin color, we ac-

counted for admixture proportions with European and Bantu

ancestry as covariates, as well as familial relatedness via

a kinship covariance matrix. Similarly for tanning status, we ac-

counted for age, sex, and ancestry-adjusted kinship. Previous

family-based estimates for skin color heritability in other popula-

tions are high, ranging between 55% and 90% (Byard, 1981;

Clark et al., 1981; Frisancho et al., 1981; Harrison and Owen,

1964). Interestingly, published genetic estimates of skin pigmen-

tation heritability in Europe are low and insignificant, potentially

because of reduced genetic diversity at skin pigmentation loci

due to positive selection (Zaidi et al., 2017). Our heritability esti-

mates in the KhoeSan are analogous to family-based estimates

because of the elevated relatedness in our samples.

We first constructed pedigrees from ethnographic interviews

for individuals within the zKhomani and Nama populations and

verified relationships where possible with genetic data. 533 indi-

viduals (including parental individuals not sampled) could be as-

signed to a pedigree, resulting in 354 extended pedigrees and

470 nuclear families. Via traditional pedigree-based estimation,

we estimate an h2pedigree of 0.96 ± 0.12 for baseline skin color

(STAR Methods). We then asked whether variation present on

the ascertained SNP arrays or from exome sequencing could

explain a similar fraction of the pigmentation variation. Genetic

heritability estimates inferred from recently admixed populations

have twopotential problems: (1) inferred familial relationships be-

tween individuals are less accurate (Thornton et al., 2012), and (2)

environmental confounders (e.g., socioeconomic status) could

be associatedwith the variance component attributed to additive

genetic effects. In order to address the first issue, we use the pro-

portion of KhoeSan, European, andBantu ancestry per individual

to correct the SNP array genetic relatedness matrix (GRM) as

described by the relatedness estimation in admixed populations

(REAP) approach (Thornton et al., 2012). The REAPmatrix is also

compared to the identity-by-state (IBS) matrix inferred using

default GCTA parameters that do not account for stratification

(STAR Methods). We include European and Bantu ancestry as
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Figure 3. Partitioned Heritability across

Known and Novel Gene Sets

Heritable variation in KhoeSan pigmentation is

partially explained by previously associated loci,

newly associated loci, and candidate genes

discovered in divergence studies of other pop-

ulations and in animal models.

(A) Schema illustrating how heritability analyses

were used to partition the phenotypic variance

explained by candidate gene sets (GS1 and GS2)

and novel associations (GS3) compared to the rest

of the genome.

(B) Variance components analysis in GCTA

comparing pigmentation variability explained by

GS1, GS2, and the rest of the genome. Error bars

span ± 1 standard error.

(C) Heritability explained by estimated value

observed in our data (dot and arrow) versus

matched null distribution in the zKhomani and Nama

after accounting for number of SNPs in GS1 gene

sets containing 14 genes previously associated with

skin pigmentation in other populations.

(D) As in (C), where GS2 = gene set from Table S4 of

(Beleza et al., 2013b) compiled based on pigmen-

tation function.

See also Figure S3.
global covariates in the heritability estimation. All further estima-

tion of h2g was made using the unconstrained model in GCTA.

Furthermore, we contrast baseline pigmentation with tanning

status (i.e., sun exposed wrist M indexminus underarmM index);

if our estimates were inflated by environmental confounders, we

would also expect inflated heritability of tanning status.

The array-based heritability-point estimates are consistently,

but not significantly, higher when using a kinship matrix from

REAP than when using GCTA’s IBS GRM, both for the joint data-

set and each population separately (Tables 1 and S3). We esti-

mate h2g = 0.97 ± 0.15 (standard error) in an unconstrained model

across both populations using the REAP GRM. We find consis-

tent results from exome sequence data, where we estimate

that h2exome = 0.95 ± 0.26 in the zKhomani. We then used the fa-

milial relationships (Figure S1) and population-level endogamy to

estimate heritability from IBD sharing among all individuals in the

zKhomani and Nama; we obtain a similar estimate of h2IBD = 0.97

± 0.15 (STAR Methods; see also Zaitlen et al., 2013).

Wecontrast the high heritability estimates for baseline pigmen-

tation with estimates for tanning status. Tanning status is signifi-

cantly associatedwith both sex (male b= 6.2 increase inM index,

p = 4.2e�4) and age (b = 0.18 increase in M index per year,

p = 1.8e�4), but not with admixture proportions. None of the tan-

ning status h2 estimates, including pedigree-, IBD-, exome-, and

SNP-array-based estimates, are significantly greater than 0 -

(Table 1), consistent with previous observations that tanning

status is largely environmentally determined by UV exposure
Ce
(Clark et al., 1981; Nan et al., 2009). The

stark contrast of the baseline pigmentation

and tanning status heritability estimates,

and the consistency of h2 across methods,

indicates that our high baseline pigmenta-
tion heritability estimates do not simply arise from pedigree and

population structure and that socioeconomic factors are unlikely

to have significant effect on our heritability estimates.

A Complex Genetic Architecture in the KhoeSan
The genetic architecture of skin pigmentation has been

described as simpler than many other phenotypes, for which

only a few genes explain �35% of the total variation in a given

population, and average genomic ancestry explains an addi-

tional �44% of the variation, indicating a long tail of smaller

effects (Beleza et al., 2013b; Candille et al., 2012). We investi-

gated how much of the heritable variation in KhoeSan popula-

tions can be ascribed to previously annotated pigmentation

gene sets (Figure 3A). The first gene set (GS1) consists of 14

genes containing or near previously discovered skin pigmenta-

tion genetic associations in Europeans, East Asians, Cape

Verdeans, and Native Americans (Tables 2 and S6). The larger,

second gene set (GS2) contains 50 genes compiled previously

(Beleza et al., 2013b) from human pigmentation associations,

positive selection scans, and model organism pigmentation

loci. The third gene set (GS3) contained 50 loci most significantly

associated with pigmentation in the KhoeSan (phase 1, see

Novel Variants Influence Skin Pigmentation in KhoeSan Popula-

tions). We partitioned the genome into GS1, GS2, GS3, and the

rest of the genome and performed four comparisons, computing

the variance explained by GS1 versus the rest of the genome,

GS2 versus the rest of the genome, GS3 versus the rest of the
ll 171, 1340–1353, November 30, 2017 1345



Table 2. Replication of Previously Associated Skin Pigmentation Variants in the Joint zKhomani and Nama Populations

Gene rsID p value b

Derived

frequency

Allele

numbera
San-specific

frequency San 95% CIb W. AFRc N. EURd

UGT1A rs6742078 0.58 �0.44 0.54 460 0.60 [0.54,0.69] 0.47 0.29

SLC45A2 rs35395 0.98 �0.02 0.32 882 0.21 [0.18,0.25] 0.20 0.99

SLC45A2 rs16891982 1.2E-03 �2.84 0.14 882 0.00 [0.00,0.02] 0.00 0.98

IRF4 rs12203592 0.83 �0.54 0.01 882 0.00 [0.00,0.00] 0.00 0.17

IRF4 rs12202284 0.51 0.99 0.04 824 0.00 [0.00,0.01] 0.15 0.21

OPRM1 rs6917661 0.29 �0.71 0.66 882 0.71 [0.67,0.79] 0.61 0.76

EGFR rs12668421 0.65 �0.49 0.08 882 0.02 [0.01,0.08] 0.06 0.27

TYRP1 rs13289810 0.61 0.53 0.19 882 0.18 [0.11,0.25] 0.24 0.34

BNC2 rs10756819 0.51 0.91 0.08 466 0.02 [0.00,0.05] 0.07 0.65

GATA3 rs376397 0.91 0.07 0.65 872 0.79 [0.75,0.82] 0.31 0.32

GRM5, TYR rs10831496 0.28 �0.90 0.52 460 0.63 [0.57,0.70] 0.12 0.69

TYR rs1042602 0.74 0.58 0.06 466 0.00 [0.00,0.02] 0.00 0.38

KITLG rs12821256 0.02 �5.28 0.02 882 0.00 [0.00,0.01] 0.00 0.17

OCA2 rs1800404 0.53 �0.40 0.55 854 0.65 [0.56,0.74] 0.11 0.81

OCA2 rs7495174 0.92 �0.07 0.71 716 0.61 [0.55,0.69] 0.26 0.90

HERC2 rs12913832 0.09 �1.70 0.10 882 0.00 [0.00,0.02] 0.01 0.79

APBA2 rs4424881 0.25 �1.24 0.18 440 0.02 [0.00,0.06] 0.07 0.86

SLC24A5 rs1426654 9.8E-09 �3.58 0.40 882 0.24 [0.17,0.32] 0.05 1.00

MC1R rs1805007 0.80 �0.64 0.01 630 0.00 [0.00,0.03] 0.00 0.11

p value indicates the joint association across all KhoeSan individuals using a linear mixedmodel accounting for European and Bantu admixture as well

as kinship. Beta values reflect the effect size of adding one derived allele, assuming an additive model, to the distribution of M index (see Figure 1).

W. AFR = western African; N. EUR = northern European.

See also Figure S5 and Table S6.
aAllele number indicates the total number of alleles genotyped or sequenced across all KhoeSan samples.
bConfidence interval for the San-specific frequencies indicates the allele frequencies specifically on zKhomani haplotypes, assessed with local

ancestry tracts.
cW. AFR allele frequencies were estimated from 405 ESN, GWD, YRI, and MSL populations in the phase 3 1000 Genomes project
dN. EUR allele frequencies were estimated from 190 GBR and CEU populations in the phase 3 1000 Genomes project
genome, andGS1 versusGS2 versus the rest of the genome. For

each comparison, we performed a restricted likelihood ratio test.

The GS1 and GS2 gene sets do not explain a significant fraction

of the heritability; that is, the heritability estimates overlap with

zero. Rather, the remainder of the genome explains the over-

whelming majority of the heritability (Figure 3B, s2
GS1 = 0.08

versus s2
Genome = 0.82, pGenome = 2.7e-5; s2

GS2 = 0.09 versus

s2
Genome = 0.79, pGenome = 3.3e-4; and s2

GS1 = 0.08 versus

s2
GS2 = 0.09 versus s2

Genome = 0.71, pGenome = 2.5e�3, respec-

tively). This result contrasts with conclusions from previous

studies and indicates that the vast majority of variation in

KhoeSan skin pigmentation arises from pigmentation genes

yet to be discovered, providing strong evidence for a complex,

polygenic architecture. GS3 explains a small but significant frac-

tion of the heritability, as discussed below.

We further assessedwhetherGS1andGS2 explainmore of the

heritable variation than a random sample of coding regions;

genes tend to explain more phenotypic variation than noncoding

regions (Gusev et al., 2014). After regressing out the effect of var-

iable numbers of SNPsper gene set (STARMethods),we find that

both GS1 and GS2 explain more than random genes with a 10%

false discovery rate (FDR = 0.016 and FDR = 0.079, Figures 3C

and 3D, respectively) across both KhoeSan populations. This is
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not significant in the Nama alone (Figure S3), likely because of

ancestry heterogeneity between the two populations.

Replication of Known Pigmentation Associations in the
KhoeSan
Even though previously identified pigmentation loci explain little

of the phenotypic variance in our samples, it is possible that

these loci simply have small effect sizes in the KhoeSan. We

used SNP array and/or resequencing data in a linear mixed

model with ancestry covariates (see STAR Methods and Novel

Variants Influence Skin Pigmentation in KhoeSan Populations)

to assess both the frequencies and effect sizes of 42 previously

identified eye, skin, and hair pigmentation variants, some of

which have been experimentally shown to be causal (Tables 2

and S6). To this end, we also deconvolved recent admixture

into local ancestry tracts across the genome and estimated the

allele frequencies specifically on KhoeSan haplotypes via expec-

tation-maximization. Known pigmentation allele frequencies

vary considerably between the zKhomani San, Europeans, and

West Africans (Table 2). However, most previously identified

pigmentation associations do not replicate with genome-wide

significance or nominally in the zKhomani and Nama, with a

few exceptions (STAR Methods).
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Figure 4. Genetic Divergence in Genes Pre-

viously Associated with Pigmentation

(A and B) Distribution of weighted FST in 20-kb

moving windows of SNPs across the genomewith a

step size of 5 kb. Labels indicate where themaximal

FSTwindow from each canonical pigmentation gene

lies in the distribution. Divergence depicted is be-

tween (A) the KhoeSan and Europeans and (B) the

KhoeSan and West African populations.

(C and D) FST in canonical pigmentation genes.

Dots indicate SNPs, solid lines indicate LOESS fit

with 95% confidence intervals. Dashed lines indi-

cate genome-wide FST colored by population

comparison. Canonical pigmentation loci/genes

are shown as (C) the SLC24A5 gene locus and (D)

the OCA2-HERC2 locus.
Becausehaplotypedifferentiation betweenpopulations canbe

a signature of selection (e.g., XP-EHH scans), we assessed ge-

netic divergence between KhoeSan,West African, and European

populations at SNPs and in sliding windows across the genome.

Wefindconsiderabledivergence inmanycanonical pigmentation

genes when comparing regions of the genome across popula-

tions (Figures 4A and 4B). We followed up our divergence scan

by focusing on twooutlier genes thatwere highly diverged among

all three populations: SLC24A5 and OCA2 (Figure 4). The diver-

gence in SLC24A5 is among the highest in the genome, espe-

cially between the KhoeSan and European populations (Fig-

ure 4C). Interestingly, different regions of OCA2 exhibit elevated

divergence between the KhoeSan and European comparison

versus the KhoeSan and West African comparison (Figure 4D).

Aprevious study suggested that thederived, synonymousTallele

of rs1800404 in OCA2 has been positively selected and is a

candidate skin pigmentation variant conferring light skin in Euro-

peans and KhoeSan populations based on its global allele fre-

quency distribution (Norton et al., 2007). We confirm its elevated

allele frequency on KhoeSan haplotypes (65%) but do not find an

association with skin pigmentation (p = 0.53). Variants in OCA2

explain most of the variation in human eye color (Duffy et al.,

2007), and rs1800404 was later significantly associated with

this phenotype (Eriksson et al., 2010); zKhomani and Nama indi-

viduals notably have heterogeneous eye color, with a range of

brown, hazel, and green eyes.We identified amissensemutation
Cell
in OCA2 (rs1800417, not significant with

skin pigmentation: p = 0.87) with a derived

allele (G) frequency of 0.32 in the KhoeSan

(Table S6) that is at low frequency in all

other populations surveyed (global allele

frequency = 0.016 in 1000 Genomes and

0.0058 in the Exome Aggregation Con-

sortium [ExAC]).

Novel Variants Influence Skin
Pigmentation in KhoeSan
Populations
To identify novel variants associated with

skin pigmentation in the zKhomani and

Nama, we performed a two-stage study
(Figure S6A), employing a linear mixed model approach including

recent admixture covariates as fixed effects and covariance

matrices adjusted for admixture (akin to a GRM in GCTA) as

random effects to identify associations between pigmentation

and high-quality imputed variants. We assessed the quality of

the imputation via homozygous reference, heterozygous, and ho-

mozygous non-reference concordance with high-coverage

exome sequencing data (Figure S4A). We ran the initial GWAS

(i.e., phase 1) with imputed variants from 107 zKhomani and 109

Nama individuals (Figures S6A–S6C and Tables S4 and S5), and

the genes closest to the strongest associations (Table S5) showed

a significant enrichment in multiple mammalian phenotypes

related to skin pigmentation (abnormal extracutaneous pigmenta-

tion p = 2.3e�3, abnormal melanocyte morphology p = 5.8e�3,

abnormal skinmorphology p = 3.5e�2). Further, the strongest sig-

nalsacross thegenotyped zKhomani andNamacohortswerenear

canonical pigmentation genes (e.g., TYRP1 and SLC24A5), genes

associated with pigmentation-related disorders (e.g., TYRP1), or

genes implicated in pigmentation in model organisms and in vitro

studies (e.g., VLDLR, SMARCA2, and others) (Sturm, 2009;

Keenen et al., 2010a; Xia et al., 2013). To assess the variation ex-

plained by the most significantly associated loci, we generated

anadditional geneset, referred toasGS3,using the50most signif-

icantly associated loci ±10 kb. We find that the GS3 loci explain

significantly more of the heritable variation in skin pigmentation

than previously identified pigmentation candidate genes in the
171, 1340–1353, November 30, 2017 1347
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Figure 5. Associations between Genetic

Data and Baseline Pigmentation

(A) Targeted resequencing QQ plot. 95% confi-

dence interval on the QQ plot is drawn assuming

the jth order statistic from a uniform sample follows

a Betaðj; n� j + 1Þ distribution. Colors differentiate

loci containing more than one variant associated

more significantly than the 95% confidence inter-

val in a region.

(B and C) LocusZoom plots of targeted re-

sequencing genetic associations incorporating

KhoeSan-specific LD. Recombination rates are

from HapMap b37. Regions include (B) SLC24A5

and (C) 5 independent signals associated with

p < 1e�3 in/near SMARCA2 and VLDLR.

(D) LocusZoom plot of suggestive association

in/near SNX13 from meta-analysis of phase 1 and

phase2 imputed associations with KhoeSan-spe-

cific LD.

See also Figure S6, and Tables S5, S6, and S7.
KhoeSan, but the majority of heritable variation remains to be

explained (Figure 3B; s2
GS3 = 0.23 ± 0.13, pGS3 = 0.027 versus

s2
Genome = 0.64 ± 0.08, pGenome<1e�5), and current forensic pre-

dictive models for skin pigmentation perform very poorly in these

under-studied populations (Figure S5).

Based on initial evidence from the imputed zKhomani pigmen-

tation GWAS, we designed a targeted next-generation

sequencing (NGS) capture and successfully resequenced 36

candidate pigmentation regions (Figure S6 and Table S7) across

a larger set of 451KhoeSan samples in order to improve power to

detect associated loci (Table S8 and STAR Methods), including

269 zKhomani and 182 Nama individuals. In this larger sample,

we observe more variants significantly associated with pigmen-

tation than expected by chance in the resequencing regions (Fig-

ure5A). The strongest signal comes fromSNPs inSLC24A5, eight

of which are all in high pairwise LD (R2 > 0.6) on a high-frequency

haplotype (Figure 5B). We identify significant associations

between lighter skin and derived SLC24A5 SNPs, including the

putatively causal p.Thr111Ala rs1426654 allele (b = �3.58 on M

index scale, p = 9.8e-9), which has previously been associated

with skin pigmentation in Eurasians. The most strongly associ-

ated SNP (rs2555364, b = �3.58 on M index scale, p = 6.7e�9)

is tightly linked with rs1426654 (LD R2 = 0.81). These variants

are strongly differentiated between Europeans and Africans,

with rs1426654havingderivedallele frequenciesof 99.7%versus

5.5% in 1000 Genomes (excluding ASW and ACB populations
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with recent European admixture), respec-

tively. The derived allele of rs1426654 has

previously been observed in the Human

Genome Diversity Project (HGDP)

Juj’hoansi San samples, which have no

detectable recent European admixture

(Norton et al., 2007), at 7% frequency.

The frequency of the derived rs1426654

allele is 40% in the combined Nama and

zKhomani dataset, which is significantly

greater than expected from �11% Euro-
pean admixture alone (binomial test p = 7.8e�52, Table S6 and

STAR Methods).

Multiple low-frequency (<5%) SNPs near several additional

genes—including EPM2A, FREM1, SMARCA2/VLDLR, and

TYRP1—are above the 95% confidence interval of expected

versus observed significance (Figure 5). Two of these loci are

near EPM2A and FREM1, neither of which have any known

role in skin pigmentation in humans or model organisms. In

contrast, there are >5 independent low-frequency signals with

p < 1e�3 within/near SMARCA2 and VLDLR, with rs7866411

(p = 8.91e�5) and rs2093835 (p = 1.17e�4) being most signifi-

cantly associated with skin pigmentation. We used HaploReg

to infer regulatory activity in/near these peaks and identify

multiple enhancer and DNase peaks identified in skin, including

melanocytes and/or keratinocytes, overlapping top tag and/or

perfectly linked SNPs (Table S6). We also identify a low fre-

quency association (rs34803545, p = 3.7e-4) �600 kb upstream

of TYRP1. This variant is perfectly linked with multiple conserved

variants, one of which exhibits enhancer activity and DNase

hypersensitivity specifically in skin (Table S6).

We performed a second phase of GWAS in which an additional

240 individuals were genotyped (Figure S6A and Table S4) and

meta-analyzed with phase 1 summary statistics. While two tan-

ning status associations met genome-wide significance, none of

the loci contained linkage peaks, suggesting that they are most

likely spurious, asexpected fromaphenotypewith lowheritability.



As expected from the resequencing study, we identified a

genome-wide significant association in SLC24A5 (rs2470102

derived alleleb=�3.4, p= 3.6e�12) anda suggestive association

upstream of TYRP1 (chr9:12088112, frequency = 0.014,

b = �13.6, p = 1.1e�07; Figures S6B, S6C, S6F, and S6G). We

identified an additional suggestive novel association in and near

SNX13, with common derived T alleles of rs2110015 associated

with light skin (b = �3.1, p = 1.3e�07, Figure S6H); SNX13 regu-

lates lysosomal degradation and G protein signaling but has not

previously been associated with skin pigmentation.

DISCUSSION

Pigmentation has been described previously as a relatively

simple trait with few loci of large effect contributing to the pheno-

type (Sulem et al., 2007; Walsh et al., 2013). However, popula-

tions living in continental Africa, where humans have the greatest

genetic diversity and pigmentation variability, have been largely

ignored in genetic studies with quantitative phenotypes. We

investigated the genetic architecture of pigmentation in two

KhoeSan populations: the zKhomani San and Nama, where

baseline melanin variation is substantial. Southern African

KhoeSan populations are the most polymorphic modern human

populations yet studied (Henn et al., 2011) and provide a unique

glimpse into the evolution of pigmentation.

Novel Genetic Associations with Pigmentation
We have performed the first genetic discovery effort for pigmen-

tation loci in the Nama and zKhomani San populations. The

strongest allelic associations include previously associated var-

iants, noncoding regions near canonical pigmentation genes,

and novel genes shown in model organisms to have a role in

pigmentation. The strongest association is in SLC24A5, which

is a well-known pigmentation gene (Lamason et al., 2005) and

is among the most differentiated regions of the genome between

European and African populations—indicative of strong positive

selection in northern Europeans (Sturm and Duffy, 2012). We find

that derived variants in SLC24A5, including missense mutations

that influence skin and eye pigmentation (Table 2), are at high fre-

quency in the KhoeSan. Notably, these variants are segregating

at higher frequency than expected by recent European admix-

ture alone. Three possible evolutionary scenarios that may

explain these elevated frequencies are as follows: (1) these var-

iants arose in southern Africa more than 100,000 years ago and

were later selected for in Europeans after the out-of-Africa

migration in response to northern UVR environments; (2) these

variants arose in Europe and the Near East, were introduced

into KhoeSan populations via ‘‘back-to-Africa’’ migration into

southern Africa predating 17th century European colonialism

(Pickrell et al., 2014; Uren et al., 2016) and have since been posi-

tively selected in the KhoeSan; or (3) a recurrent mutation (G to A

transition at the CpG ancestral dinucleotide, a class of mutations

shown to have elevated mutation rates) occurred. Considerable

future work is needed to definitively disentangle these scenarios.

The Polygenic Architecture of Pigmentation in Africa
We assessed the heritability of baseline skin pigmentation and

find that it is virtually completely heritable in KhoeSan popula-
tions. In contrast, tanning status is primarily environmental,

with heritability estimates which are not significantly different

from zero. In European populations, predictive models based

on only 9 SNPs capture up to 16% of the variance in skin

pigmentation (Liu et al., 2015), highlighting its relative simplicity.

We applied a predictive model based on these SNPs to the

Nama and zKhomani San populations, and find no significant as-

sociation between predicted skin color and spectrophotometri-

cally measured skin M index, showing that this estimation fails

to capture the genetic variation driving the phenotype in the

KhoeSan. Given the large effect sizes and high fraction of varia-

tion explained in Eurasian populations, we asked whether and

how much of the phenotypic variation can be explained by

previously identified genes. All gene sets, including previously

associated loci, canonical pigmentation genes, and the most

significantly associated variants in this study, explained a small

fraction of the phenotypic variance (s2
GS1 = 0.08, s2

GS2 = 0.09,

s2
GS3 = 0.23, respectively). As expected from previous work

(Martin et al., 2017), our results indicate that genetic risk predic-

tion is strongly affected by population structure. Most of the

pigmentation variability in KhoeSan populations is not explained

by previously identified loci, suggesting that more than 50 loci

(and indeed, likely far more, given our genomic heritability esti-

mates) with a distribution of mostly small effects contribute to

variation in pigmentation in the KhoeSan. This suggests that

skin pigmentation is a far more complex trait than previously

discussed, analogous to numerous other complex traits dis-

cussed in biomedical literature.

The Evolution of Skin Pigmentation: Selection and
Constraint
By aggregating a large set of quantitative skin pigmentation phe-

notypes (n = 4,712) from globally diverse populations, we have

demonstrated heteroskedasticity as a function of latitude. As

observed previously, we find a strong correlation between abso-

lute latitude and average skin pigmentation reflectance caused

by melanin content. We also observe that populations with ligh-

ter skin have reduced variation within any given study: popula-

tions furthest from the equator have narrower distributions, while

populations closest to the equator have wider distributions.

These patterns suggest that selection is acting differently at

different latitudes. In equatorial regions, strong directional selec-

tion for darker pigmentation has shifted the distribution means in

some populations toM indices >90, but withwide variances. This

is consistent with a ‘‘threshold’’ model (Chaplin, 2004) in which

the protective benefit of melanin needs to meet some minimum

threshold but with no penalty to darker pigmentation; alterna-

tively, diversifying selection could maintain the wide variance.

In stark contrast, pigmentation in far northern European and

Asian populations has been under directional selection for

decreased melanin production, reflected by very narrow distri-

butions. Theremay be biological constraints on the lower bound-

ary of skin pigmentation, and/or due to the strong positive selec-

tion acting on a few large-effect alleles, there is little genetic

variability left at these pigmentation loci. This would simplify

the genomic architecture—with relatively few alleles of large

effect, particularly alleles that lighten skin at extreme northern

latitudes, driving the phenotype—and could explain why prior
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investigations observed an almost Mendelian inheritance of

large-effect light pigmentation alleles.

Finally, populations at intermediate latitudes have increased

variance and higher means than populations in northern Eurasia,

but less than equatorial populations. The most parsimonious

explanation for this pattern is that stabilizing selection affects

the light and dark tails of the pigmentation distribution (Barton,

1999). The Nama and zKhomani San appear to have two such

instances of this intermediate variation within Africa, likely attrib-

utable to their geographic distance from the equator in far south-

ern Africa (�24�–29� south). The observed mean and variance

differences across the full spectrum of skin pigmentation by lati-

tude may be driven by imbalanced opposing adaptive pressures

where selective forces to produce vitamin D and protect folate

from photolysis are unequal and change in response to UV radi-

ation exposure. Given our heritability results and the observed

variability in baseline pigmentation, light skin pigmentation in

the KhoeSan appears to be due to a combination of many

small-effect mutations as well as some large-effect variants.

The evolution of the pigmentation phenotype in these populations

cannot be explained in terms of only a few variants segregating in

Eurasians. A fuller characterization of the genes underlying the

architecture in Africans is needed before we can distinguish be-

tween the hypothesis of directional versus stabilizing selection

across different latitudes (Berg and Coop, 2014).

Conclusion
Because African populations often carry the ancestral (i.e., dark)

allele for skin pigmentation genes identified in Eurasians, allu-

sions to African skin pigmentation have ignored the great vari-

ability in this phenotype across Africa. Here, we reiterate that

skin pigmentation varies more in Africa than in any other conti-

nent, and we show that pigmentation in African populations

cannot simply be explained by the small number of large-effect

alleles discovered in Eurasians. Even in lightly to moderately pig-

mented KhoeSan populations, the polygenicity of skin pigmenta-

tion is much greater than in Eurasians, encompassing both

known pigmentation genes as well as novel loci. We argue that

the distributions of skin pigmentation globally suggest different

forces of selection operating at various latitudes. To better

understand baseline pigmentation, one of the most rapidly

evolving traits and strongest cases for positive selection in hu-

mans, it is essential to quantitatively measure and study pigmen-

tation in a large set of genetically diverged populations that have

historically been exposed to different levels of UV radiation. As

human genetics moves to ever larger studies of complex traits,

the full picture of genetic architecture will remain incomplete

without representation from diverse worldwide populations.
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EMMAX Kang et al., 2010 http://genetics.cs.ucla.edu/emmax/

ADMIXTURE Shringarpure et al., 2016 https://www.genetics.ucla.edu/software/admixture/

PLINK Chang et al., 2015 https://www.cog-genomics.org/plink2

VEP McLaren et al., 2016 http://www.ensembl.org/info/docs/tools/vep/index.html

LOFTEE https://github.com/konradjk/loftee https://github.com/konradjk/loftee

SOLAR Almasy and Blangero, 1998 http://www.biostat.wustl.edu/genetics/geneticssoft/

manuals/solar210/00.contents.html

GCTA Yang et al., 2011 http://cnsgenomics.com/software/gcta/

BWA Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Picard http://broadinstitute.github.io/picard/ http://broadinstitute.github.io/picard/

KING Manichaikul et al., 2010 http://people.virginia.edu/�wc9c/KING/manual.html

BEAGLE Browning and Browning, 2007 https://faculty.washington.edu/browning/beagle/

beagle.html

R https://www.r-project.org/ https://www.r-project.org/

GENESIS Conomos et al., 2016 http://bioconductor.org/packages/release/bioc/html/

GENESIS.html

REAP Thornton et al., 2012 http://faculty.washington.edu/tathornt/software/REAP/

index.html

enrichR Chen et al., 2013 http://amp.pharm.mssm.edu/Enrichr/

HaploReg Ward and Kellis, 2012 http://archive.broadinstitute.org/mammals/haploreg/

haploreg.php

RFMix Maples et al., 2013 https://sites.google.com/site/rfmixlocalancestryinference/

GERMLINE Gusev et al., 2009 http://www.cs.columbia.edu/�gusev/germline/

Shapeit2 O’Connell et al., 2014 http://www.shapeit.fr/

Impute2 Howie et al., 2009 http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

GATK McKenna et al., 2010 https://software.broadinstitute.org/gatk/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, BrennaM.

Henn (brenna.henn@stonybrook.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection and ethics approval
As described previously (Henn et al., 2011; Uren et al., 2016), sampling of the zKhomani San took place in the Northern Cape of South

Africa in the southern Kalahari Desert region (near Upington and neighboring villages) in 2006, 2010, 2011, 2013, and 2015. Sampling

of the Nama took place in the Richtersveld in 2014 and 2015. Institutional review board (IRB) approval was obtained from Stanford

University, Stony Brook University, and the University of Stellenbosch, South Africa. zKhomani Nju-speaking individuals, Nama

individuals, local community leaders, traditional leaders, nonprofit organizations, and a legal counselor were all consulted regarding

the aims of the research before collection of DNA (Henn et al., 2011). Research was conducted with the permission of the Working

Group of Indigenous Minorities in Southern Africa (WIMSA) and, subsequently, the South African San Council. All individuals gave

signed written and verbal consent with a witness present before participating. Individuals collected in 2006 were re-consented under

an updated protocol. Ethnographic interviews of all individuals were conducted, including questions about age, language, place of

birth, and ethnic group of the individual and of his/her mother, maternal grandparents, father, and paternal grandparents. All individ-

uals included in the study were adults (age range of 18 to 94, mean = 53, sd = 18). Both men and women were included in the study

(311 females, 190 males). We recorded the relationships between any sampled individuals if revealed during the interview. Ages of

older individuals were verified with separate interviews regarding reproductive history. DNA was obtained via saliva, collected using

Oragene saliva collection kits (DNAGenotek, Ontario, Canada).

METHOD DETAILS

Skin reflectance measurements
A portable reflectance spectrophotometer (DermaSpectrometer DSMII ColorMeter, Cortex Technology, Hadsund, Denmark) was

used to measure skin pigmentation. Similar devices have previously been shown to measure melanin and hemoglobin (Diffey

et al., 1984). The melanin content, M index is quantified as

M= log10

�
1

% red reflectance

�

The device was calibrated to 0 as suggested by the manufacturer twice a day while sampling. Five measurements of M index were

taken on each of the left and right upper inner arms to approximate baseline constitutive skin pigmentation. We also measured the

dorsal side of the left or right wrist (i.e., an area exposed to sunlight) and subtracted the baseline pigmentation for a measure of

tanning status (Shriver and Parra, 2000). For the remainder of the analyses, we used the trimmed phenotype means (highest and

lowest values removed); we also averaged the inner arm skin pigmentation measurements over the two arms.

Genotyping platforms
A total of 471 KhoeSan samples were genotyped across all arrays, including the Illumina 550k array, Illumina OmniExpress and

OmniExpressPlus arrays, Illumina Omni2.5 array, and the Illumina MEGA array, some of which has been described individually pre-

viously. 35 zKhomani, 21 Hadza, and 35 Sandawe individuals were previously genotyped on the Illumina Beadchip 550K custom v2

chip (Henn et al., 2011). 86 zKhomani and 13Namawere genotyped on the Illumina OmniExpress andOmniExpressPlus arrays (same

base content, additional exome content in the Plus version of the array) (Uren et al., 2016). 105 Nama individuals were genotyped on

the Illumina Omni2.5 array as part of the African Genome Diversity Project. 185 zKhomani and 84 Nama individuals were genotyped

on the Illumina MEGA array. Table S4 indicates the number of samples genotyped on each array platform, as well as the overlapping

phenotypes, exome sequencing, and targeted resequencing. A small number of individuals overlapped between multiple arrays to

perform QC.

Global ancestry estimation
Wederived two sets of genome-wide ancestry estimates: one from a smaller set of genotyping array data and one from a larger set of

samples with targeted resequencing data. For the former set of estimates, we included genotype data from the Human Genome

Diversity Project (HGDP-CEPH, sample sizes in parentheses) as reference samples, including the South African Bantu (8), Kenyan

Bantu (11), Namibian San (6), Mozabites (29), and French (28). We also included genotype data from 12 Namibian San individuals

from Schuster et al. (2010), as well as individuals from the Hadza (17) and Sandawe (28) of Tanzania, described by Henn et al.

(2011). We also included individuals genotyped in the HapMap Project, including Yoruba trio parents from Ibadan, Nigeria (YRI,

55), Centre d’Etude du Polymorphisme Humain (CEPH) Utah residents with ancestry from northern and western Europe (CEU) trio

parents (86), and Maasai trio parents from Kinyawa, Kenya (MKK, 30) individuals (Altshuler et al., 2010). Because of the high degree
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of relatedness in our dataset, we then split the merged zKhomani and Nama data into 11 groups of maximally unrelated KhoeSan

individuals from this study based on ethnographic information, then merged in these samples as well, holding the reference panels

constant. After merging the SNPs genotyped in the HapMap, HGDP-CEPH, and South African samples, and removing SNPswith any

genotype missingness using PLINK 2, SNPs with minor allele frequency < 1%, and SNPs in high LD (r2 > 0.9) a total of 215,607 SNPs

remained. All datasets were merged to Human Genome Build hg19 as above and dbSNP v138. We ran ADMIXTURE for k = 3-7 in

unsupervised mode for each of the 11 groups, then matched clusters across runs. In runs where we identified multimodality, we

further split running groups of KhoeSan samples resulting in a minor mode into two sets, which resulted in unimodality across all

runs. After matching clusters, we merged ancestry estimates across all 11 running groups, averaging individuals that appeared in

multiple running groups. We chose k = 7 as the most stable and best representation of ancestry.

For the larger resequencing data, we extracted sequence data in the targeted resequencing intervals (Table S7) for 99 CEU and 99

LWK samples from the 1000 Genomes Project bam files and generated gVCF files, then called variants jointly with HaplotypeCaller.

We included unrelated KhoeSan samples estimated to have > 90% KhoeSan ancestry from the genotype-based ancestry estimates

as reference samples, then ran ADMIXTURE in supervised mode, projecting related and more admixed samples.

Using the same data, we also estimated ancestry estimates using PCA. Because of the elevated relatedness and admixture in our

data, we applied the PC-AiR and PC-Relate approaches (Conomos et al., 2016).

Covariates
We performed forward stepwise regression using custom scripts in R to select the best multivariate mixed model of ancestry, age,

and sex for pigmentation and tanning with a random effect accounting for the genetic relationships among individuals. Sex and age

do not significantly correlate with baseline skin pigmentation, suggesting that our quantitativemeasure of underarm reflectance is not

significantly affected by UV exposure. The best model fit, measured via AIC, included Bantu, European, East African, and Hadza an-

cestries, although the latter two components comprise % 1% of individuals’ total ancestry on average and are likely imprecise.

Identity-by-descent (IBD) haplotype sharing
To estimate IBD, we phased intersected genotypes for the zKhomani and Nama populations both separately (number of

SNPs = 300,370 in zKhomani, 525,934 in Nama) and jointly (number of SNPs = 241,929) using Beagle (v4.1) (Browning and Browning,

2007). Adjusting for differences in SNP density, we used a sliding window size of 600 markers with 55 overlapping SNPs between

each window for the zKhomani, a window size of 1000 markers with 90 overlapping SNPs between each window for the Nama,

and a window size of 400 markers with 39 overlapping SNPs between each window for the joint zKhomani and Nama intersection,

with 10 iterations per run. The phased data was then used to infer haplotypes shared via IBD with length R 5 cM using Germline

(v.1.5.1) with the following flags for the joint haplotype calls: ‘‘-w_extend -min_m 5 -err_hom 2 -err_het 5 -bits 60’’ (Gusev et al.,

2009). This allowed a mismatch of 2 homozygous and 5 heterozygous markers. We verified the total genomic length of the inferred

cumulative IBD between pairs of individuals by comparing to pedigree relationships identified from ethnographic interviews and veri-

fied with IBD inferred here from the genotyping arrays.

Covariance matrices
To account for the considerable relatedness in our samples, which have variable degrees of admixture, we evaluatedmultiple covari-

ance matrices: a Balding-Nichols matrix computed via EMMAX (Kang et al., 2010), a genetic relationship matrix (GRM) computed via

GCTA (Yang et al., 2010), and a kinship matrix computed via REAP (Thornton et al., 2012). To generate the REAP matrix, we inter-

sected genotype data for all individuals, then included P and Q matrices obtained from an ADMIXTURE run with k = 3 (described in

Ancestry estimation) to construct the ancestry-corrected kinship matrix. Briefly, this approach uses individual-specific allele fre-

quencies at SNPs that are calculated on the basis of genome-wide ancestry. We compared inferred pairwise kinship values in all

covariance matrices to ethnographically and genetically validated pedigree information. We used the REAP matrix to correct for

kinship in all regression models unless otherwise noted because it correlated best with true relationships (e.g., heritability analyses

with different kinship matrices).

We also constructed a kinship matrix using pairwise IBD estimates ðKIBDÞ, as previously (Zaitlen et al., 2013), with haplotypes

sharing calls computed as described above. We constructed a kinship covariance matrix based on IBD ðKIBDÞ, where the entry

for individuals j and k are defined as follows: P
iLi

Lparent�off spring

where Li is the genetic length in centimorgans of ith IBD segment between individual j and k, and Lparent�offspring is the total length of

IBD in centimorgans shared between a parent and an offspring (i.e., the callable length of the haploid genome).
e3 Cell 171, 1340–1353.e1–e7, November 30, 2017



Heritability
Heritability estimates were calculated across the full KhoeSan sample (Nama and zKhomani) in addition to within each population

separately. We used GCTA restricted maximum likelihood (REML) analysis to compute SNP-based heritability ðh2gÞ in multiple

ways with differing covariance matrices. For all heritability analyses of baseline pigmentation, we included European and Bantu

ancestry proportion estimates at k = 7 from ADMIXTURE as quantitative covariates. For tanning status, we included age as a quan-

titative covariate and sex as a binary covariate.We assessed h2g by fitting an unconstrained linearmixedmodel (–reml-no-constrain) in

GCTA (Yang et al., 2010), once using a covariance matrix constructed with REAP, and once with a genetic relationship matrix (GRM)

generated in GCTA. We estimated heritability from the exome data ðh2exomeÞ similarly using a GRM generated in GCTA with exome

sequencing data from 82 zKhomani individuals. We also estimated heritability ðh2IBDÞ in our study using a kinship matrix constructed

from pairwise IBD estimates ðKIBDÞ, as previously (Zaitlen et al., 2013). Lastly, we estimated narrow sense heritability using pedigree

relationships ðh2pedigreeÞ that were constructed from ethnographic interviews and subsequently genetically confirmed using the

Sequential Oligogenic Linkage Analysis Routines (SOLAR) software (Almasy and Blangero, 1998). SOLAR employs maximum likeli-

hood variance decomposition to determine narrow-sense h2 assuming a normal distribution. SOLAR employs maximum likelihood

variance decomposition to determine narrow-sense h2 assuming a normal distribution. It calculates heritability utilizing pairwise

coefficients of genetic relatedness in the full pedigree, including dummy link individuals. The ‘‘polygenic’’ command was used to

calculate trait polygenic heritability, significance of h2pedigree, and the proportion of variance contributed by covariates, with the

‘‘screen’’ flag to assess the significance level of each covariate.

Variance partitioning
We partitioned heritability in two ways: 1) by comparing the heritability explained by candidate gene sets versus the rest of the

genome, and 2) by comparing the heritability explained by candidate gene sets to randomly sampled genes. For the first type of anal-

ysis, we generated GRMs based on SNPs that fall within pigmentation candidate gene sets, including GS1 (genes in Table 2), GS2

(Table S4; Beleza et al., 2013b), GS3, and the rest of the genome. We performed a restricted likelihood ratio tests comparing the her-

itability explained by each gene set to the rest of the genome. We estimated partitioned heritability explained by different gene sets

using joint linear mixed models, by including multiple genetic variance components as random effects.

For the second type of analysis, we sought to determine how likely we are to find a candidate pigmentation gene set explaining

more of the heritable variation than a random gene set. To do this, wematched both candidate gene sets by number of genes, length,

and number of exons and permuted these matched samples 1000 times. Specifically, we generated a GRM in GCTA based on SNPs

in these candidate genes, then calculated the heritability based on this GRM. Then, we binned all genes in the genome by the natural

log of their lengths (absolute value of transcription end - transcription start) and number of exons. For each gene in the gene set, we

sampled with replacement from its matched length and exon bin, and constructed 1000 matched gene sets. To create an empirical

null distribution, for each of the 1000 matched gene sets, we constructed a GRM, and computed heritability. We then regressed out

the effect of number of SNPs on heritability explained, then generated empirical false discovery rates by comparing the residual her-

itability of the true candidate gene set to the residual heritability of the matched empirical null distribution.

Categorical pigmentation prediction
As described previously (Hart et al., 2013; Spichenok et al., 2011), published categorical skin color prediction models utilize 7 SNPs

(rs12913832, rs1545397, rs16891982, rs1426654, rs885479, rs6119471, rs12203592) in or nearby pigmentation genes. The model

follows a bifurcating decision tree, dependent on homozygous state at each locus. At any two loci except rs6119471, if both are

homozygous derived, then the phenotype is predicted as ‘‘non-dark,’’ i.e., medium or light. Further ‘‘light’’ pigmentation is confirmed

if all three loci: rs12913832, rs16891982, and rs1426654 are homozygous derived. A ‘‘non-light,’’ i.e., medium or dark, is predicted if

rs6119471 is homozygous ancestral (Figure S5).

Replication of known pigmentation loci
Few known loci replicate with genome-wide significance or even marginally in the KhoeSan populations studied here. Four SNPs in

the genes SLC45A2 (rs16891982, p = 1.2e-3), KITLG (rs12821256, p = 0.02), and SLC24A5 (rs1426654, p = 9.8e-9 and rs2470102,

p = 1.1e-8) marginally replicate in the zKhomani + Nama under an additive model. The derived allele frequencies of the associated

SNPs in SLC45A2 and KITLG are low in the KhoeSan, consistent with �10% admixture from recent European gene flow. Interest-

ingly, however, SNPs in OCA2, SLC24A5 and GRM5/TYR are at much higher frequencies in both the zKhomani and Nama than

expected from European admixture alone, as estimated from global ancestry (see ‘‘Global ancestry estimation’’). We do not replicate

the vast majority of previously observed skin pigmentation associations in our dataset, potentially due to low frequencies in the

KhoeSan, power limitations, differentiated LD structure in which the tag SNPs are non-causal pigmentation alleles, or epistatic

effects. It is therefore unsurprising that when we applied forensic models based on only seven SNPs that claim very high prediction

accuracy of skin color across populations (> 99%) (Hart et al., 2013; Spichenok et al., 2011), we did not find a significant association

with quantitatively measured M index (p = 0.31, Figure S5B).
Cell 171, 1340–1353.e1–e7, November 30, 2017 e4



Phasing and imputation
We first ensured uniform SNP IDs by orienting all variants to dbSNP 138, then merged genotype data for KhoeSan individuals across

all genotyping platforms (Illumina 550k, OmniExpress, OmniExpressPlus, and Omni2.5). We then phased all zKhomani (n = 121) and

Nama (n = 112) individuals together with Shapeit2 (v2.r778) using all available genetic data. We used the full Phase 3 1000 Genomes

reference panel, consisting of haplotypes from 2,535 individuals to aid phasing accuracy. Shapeit imputes missing genotypes, which

can result in array-specific technical artifacts. We mitigated technical artifacts from individuals genotyped on different arrays by

subsetting haplotypes to variants genotyped only the array, resulting in four sets of haplotypes. We then imputed variants in 5 Mb

windows for all 4 sets using the full 1000 Genomes phase 3 reference panel as well as 53 HGDP medium coverage genomes

(Henn et al., 2016) with Impute2 (v2.2.2) for all runs. After imputing each array separately, we aggregated the data across windows

and runs, including only sites that were imputed with an Impute2 info metric R 0.8 across all sets and subset to sites with MAF R

0.01. We assessed the accuracy of the imputation in three ways. First, we assessed the homozygous reference, heterozygous, and

homozygous non-reference concordance between the imputed output and two low-pass genome sequences from individuals

SA1000 and SA1025 at sites that passed variant call filters and with > 5 reads. Next, we assessed concordance similarly across

all 79 individuals for whom we have both genotype and high coverage exome sequencing data (see Figure S4). Finally, we ran

PCA for 100,000 randomly selected imputed sites across all individuals as well as for the maximum number of unrelated individuals

to test whether the primary source of aggregated imputed variation arose from technical artifacts or population/familial structure. By

investigating the top PCs, we concluded the latter.

Local ancestry inference
To disentangle haplotypes specific to a given ancestry and estimate ancestry-specific allele frequencies, we inferred local ancestry

along chromosomes for all the genotyped zKhomani (n = 121) and Nama (n = 112) individuals included in phase 1 of the study, as

described in (Uren et al., 2016). We phased haplotypes as described above. As reference panels, we defined separate classes for

European, Bantu, and KhoeSan ancestries respectively using CEU, LWK, and zKhomani individuals from this study as well as

KhoeSan individuals from a previous study (Schuster et al., 2010) with > 90% KhoeSan ancestry as inferred via ADMIXTURE

(see ‘‘Ancestry estimation’’). We used RFMix (v1.5.4) to assess local ancestry at sites that intersected between the reference panels

using an iterative expectation maximization (EM) approach with 0.2 cM windows, incorporating the reference panel throughout EM

iterations and correcting potential phase errors.We used a node size of 5 to deal with class imbalances in our reference panels. For all

individuals, we used calls from RFMix at the 1st iteration.

Allele frequency approximation
Because the zKhomani San are a recently admixed population, we estimated allele frequencies with consideration to local ancestry

calls.We specifically estimated allele frequencies on KhoeSan haplotypes using an expectationmaximization approach (Gravel et al.,

2013). Briefly, we usedBayes’ Rule to calculate the expected frequency given the observed genotype and diploid local ancestry calls.

Ancestral/derived state were determined from great ape genome sequencing, where possible (Prado-Martinez et al., 2013).

Mixed-model association approach
To identify loci significantly associated with baseline skin pigmentation and tanning status, we associated high quality imputed and

resequenced SNPs and indels with these pigmentation phenotypes using a linear mixed model, with a covariance matrix of related-

ness as a random effect. Aswith the heritability analyses, we used a covariancematrix constructed using REAP to account for admix-

ture in the construction of the covariance matrix. We included the proportion of European and Bantu ancestry estimated via

ADMIXTURE as fixed effect covariates for baseline pigmentation and tanning status, as chosen in forward stepwise regression.

We also included age and sex covariates for tanning, which were significantly associated with the phenotype. We performed the

association analysis using EMMAX (Kang et al., 2010) for the imputed data and GCTA (Yang et al., 2010) for the resequenced

data, as both employ mixed model approaches and readily support different data formats.

Meta-analysis
We performed inverse variance weighted meta-analysis of summary statistics of the phase 1 and phase 2 summary statistics from

imputed data using METAL (Willer et al., 2010).

Association enrichment
Using the 50 most significant associations in the imputed dataset, we identified the closest genes using bedtools with gencode v19

gene annotations. We assessed enrichments using enrichR (Chen et al., 2013), which computes enrichment in three ways: 1) the

Fisher’s exact test, the standard method implemented in most enrichment analysis tools, assuming a binomial distribution (i.e., pres-

ence/absence of a gene in a gene set) and independence of a gene belonging to any set; 2) the deviation from the expected rank by

the Fisher’s exact test givenmany random input gene lists is computed as a z-score, providing a correction to the Fisher’s exact test;

and 3) multiplying the log of the p value from the Fisher’s exact test by the z-score computed in the second test to generate a
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combined score. We investigated enrichment using the Mouse Genome Informatics (MGI) Mammalian Phenotype ontology rather

than the Human Phenotype ontology because pigmentation is highly diverged across populations and has not been studied thor-

oughly across all populations.

Across all GWAS efforts, we find a significant enrichment of genes related to melanogenesis. Specifically, we find several indepen-

dent associations near SMARCA2 and VLDLR. SMARCA2 has a known role in folate biosynthesis, in vitamin D-coupled transcription

regulation, and is differentially expressed across CEU and YRI populations in lymphoblastoid cell lines (Duan et al., 2009). Addition-

ally, previous functional studies have shown that MITF, the transcription factor known as the ‘‘master regulator of melanogenesis’’

due to its ability to activate many melanocyte-specific genes (Praetorius et al., 2013), recruits critical components of the SWI/SNF

chromatin remodeling complex (including SMARCA2), to the promoter region of its targets (Vachtenheim et al., 2010). This recruit-

ment is required for normal expression of many MITF target genes, including TYR, TYRP1, DCT, RAB27A, BCL2, among others

(Keenen et al., 2010b). Additionally, VLDLR knockout mice exhibit hypopigmented retinas (Xia et al., 2013). We also find a suggestive

association upstream of TYRP1 (Figures 5A and S6G). TYRP1 mutations in humans have been associated with oculocutaneous

albinism and shown to cause nearly Mendelian inheritance of blond hair in Solomon Islanders (Kenny et al., 2012; Sarangarajan

and Boissy, 2001). Thus, we observe enrichments ofmolecular pathways involved in pigmentation beyond those previously identified

as associated with the phenotype in non-African populations.

Exome variant calling and annotation
Illumina sequencing reads from 91 KhoeSan DNA samples (of which 82 had pigmentation phenotypes) were captured with: 74 sam-

ples on an Agilent SureSelect HumanAll Exon V2 44Mb array (23 101 bp reads, sequenced at BGI on a HiSeq 2000), 8 samples on an

Agilent SureSelect Human All Exon 50Mb array (23 101 bp reads, sequenced at BGI on a HiSeq 2000), and 8 samples on an Agilent

SureSelect Human All Exon V4+UTRs 71Mb array (23 126 bp reads, sequenced at the New York Genome Center on a HiSeq 2500).

Sequencing data was processed according to a standard pipeline informed by the 1000 Genomes Project. Briefly, we aligned reads

to the hg19 reference genome using bwa-mem 0.7.10. We then sorted bam files and marked duplicate reads with Picard v1.92.

We next ran RealignerTargetCreator, IndelRealigner, BaseRecalibrator, PrintReads, HaplotypeCaller, GenotypeGVCFs, and

VariantRecalibrator, and ApplyRecalibration with GATK (v3.2.2). During the HaplotypeCaller step, we filtered reads down to the

capture regions ± 100 bp of padding. We annotated exomic variants using the Variant Effect Prediction tool (VEP) using Ensembl

version 75 annotations, which annotates variants using Gencode v19 gene set annotations. We also annotated loss-of-function

variants using LOFTEE (https://github.com/konradjk/loftee). We calculated genotype concordance comparing passing variant calls

to the corresponding Illumina 550k, Illumina OmniExpress, and Illumina OmniExpressPlus arrays. On target coverage was calculated

using GATK’s DepthofCoverage tool.

Targeted resequencing
For 441 KhoeSan samples (n = 269 zKhomani and n = 172 Nama), we performed targeted resequencing. Older samples had a smaller

quantity of DNA, so we first performed whole genome amplification (WGA) for a subset of samples. We chose resequencing targets

based on the output of the zKhomani GWAS, enriching for strong associations, associations near genes with prior evidence for a role

in pigmentation, and regions containing SNPs previously implicated in pigmentation in other populations. We chose 35 regions

totaling 7.1 Mb and used the NimbleGen SeqCap EZ Choice Enrichment Kit to enrich for these loci. We barcoded then pooled 96

samples per sequencing run with the Illumina NextSeq.

Resequencing variant calling
Resequencing data was processed in the sameway as exome variant calls up until the HaplotypeCaller step. Because there were not

enough variants in the 7 Mb capture region to run VQSR, we applied hard filters to as quality control. We removed samples

with < 10x mean coverage, samples with a R 8% contamination rate measured by verifyBamID, and highly discordant samples

(concordance with genotyping array < 95%). We also removed variants with < 1% allele frequency, sites with > 50% missingness,

and spanning (< *:DEL > ) variants.

Resequencing QC
The resequencing designwas successful for all targets, although the regions targeting SNPs previously associated with pigmentation

inMC1R and TPCN2 had significantly lower coverage than the other regions. The resequencing efforts yielded large amounts of high-

quality data for each pool with on average 84% of reads in target regions, achieving a median depth of coverage of 29X per sample.

We compared variant calls and genotypes for samples that were genotyped on an array and achieved an average of > 99% concor-

dance (Figure S4). We discovered a total of 46,429 SNPs and indels with a MAF > 1% that passed our quality control filters, resulting

in a Bonferoni threshold of 1.08e-6.

QUANTIFICATION AND STATISTICAL ANALYSIS

All heritability analyses except for the pedigree-based analysis were performed with GCTA. Pedigree-based heritability analysis was

performed with SOLAR. All mixed model association analyses with the imputed GWAS data were performed with EMMAX. All mixed
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model association analyses with resequenced data were performedwith GCTA. All other statistical analyses, unless otherwise noted,

were performed using R.

DATA AND SOFTWARE AVAILABILITY

Processed data are available here: https://data.mendeley.com/datasets/98mh8z78m3/draft?a=4a3dc606-f854-4190-9f26-

e5e07110349e.

According to the newly issued SanCode of Research Ethics, as published by the South African SanCouncil (http://trust-project.eu/

wp-content/uploads/2017/03/San-Code-of-RESEARCH-Ethics-Booklet-final.pdf), parties should first contact the South African San

Council to request data access and submit a project proposal. Following local approval, Dr. Henn will release the appropriate SNP

array, exome, and/or phenotype data. The South African San Institute can be reached via email (admin@sasi.org.za) or at the

following address: South African San Institute, 4 Sanda Park, Platfontein Farm, Barkly West/Kimberley Road, Kimberley, North

Cape, South Africa.
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Supplemental Figures

Figure S1. Pedigrees Inferred from Ethnographic Information, Related to Table 1 and STAR Methods

Ethnographically inferred pedigrees for KhoeSan individuals are shown in: A) the zKhomani, and B) the Nama. Different shades represent whether the samples

have been genotyped. Non-phenotyped individuals are crossed in pedigrees.



Figure S2. Ancestry Estimates in zKhomani and Nama Samples, Related to Figure 2

(A) Admixture runs across K = 3-7 for the zKhomani and Nama populations, using Namibian San, Hadza, Sandawe, Maasai, Kenyan Bantu, South African (SA)

Bantu, Yoruba, Mozabite, Central Europeans (CEU), and French populations as a reference panel, as in Figure 2A.

(B) Minor ancestry component associations with M index, displayed with a square root x axis to elongate the minor contributions.

(C) Pairwise ancestry component correlations at k = 7 from (A). Upper triangular matrix shows Pearson’s correlation coefficient between pairwise ancestry

estimates. Lower triangular matrix shows scatterplots with zKhomani shown in blue and Nama shown in red.

(D–F) Principal Components Analysis (PCA) biplots for the same SNPs and individuals used in the ADMIXTURE analysis adjusted for relatedness using King and

the PC-AiR approach. (D) PC1 versus PC2, (E) PC3 versus PC4, and (F) PC5 versus PC6.



Figure S3. Partitioned Heritability by Population, Related to Figure 3

Proportion of heritable variation in baseline pigmentation explained by true pigmentation gene sets (dots) versus matched null distribution after accounting for

number of SNPs in gene sets in two different candidate gene sets. Results are stratified by the combined (comb) data, zKhomani (khm), and Nama populations.

* indicates FDR < 0.1 (indicated by the top decile of the null distributions). Gene set labels are the same as in Figure 3.



(legend on next page)



Figure S4. Imputation and Targeted Resequencing Quality Control, Related to STAR Methods

(A) Imputation quality was assessed via homozygous reference (HR), heterozygous (Het), and homozygous non-reference (HN) concordance for imputed

dosages with high coverage exome sequencing data. Each concordancemetric was computed as the ratio of dosages for a particular genotyping class (e.g., HR)

in both genotype and exome datasets to the dosages of that total class in the genotype dataset with any call in the exomes. The colors indicate the different

genotyping arrays, with the 550k array in red, OmniExpress array in blue, and OmniExpressPlus array in green.

(B–E) Targeted resequencing quality control. (B) Depth of coverage versus array concordance. Dashed line at 10X indicates minimum depth accepted for a

sample’s inclusion. (C) Depth of coverage by targeted resequencing region. (D) Resequencing coverage by sequencing library. Solid line indicates median value,

and dashed lines indicate 25% and 75%quartiles. (E) Fraction of reads in targeted resequencing regions by sequencing library. Sequencing libraries (seq1, seq2,

seq3, seq4, seq5, new_seq1, new_seq2, new_seq3, new_seq4, and new_seq5) consisted of barcoded and pooled samples, with most samples sequenced in

multiple libraries. Libraries with ‘‘new’’ in the name were sequenced after the last sample collection.



Figure S5. Pigmentation Prediction from Other Models Are Inaccurate in the KhoeSan, Related to Table 2

(A) Prediction model of skin pigmentation based on seven SNPs. The model (Hart et al., 2013; Spichenok et al., 2011) utilizes a bifurcating decision tree based on

individuals’ genotypes at seven predictive loci. The condition of each stepwise decision is described, with arrows indicating the decision possibilities. Categorical

predictions are shown at the bottom of the chart.

(B) Pigmentation prediction result is shown as individuals’ actual spectrometer measured of M index against predicted categorical pigmentation. Number of

individuals assigned to each category is shown in the x axis labels. The prediction is based on a previously developed 7-SNP model (Hart et al., 2013; Spichenok

et al., 2011), with predicted output categorized as ‘‘Light,’’ ‘‘Medium,’’ ‘‘Dark,’’ or ‘‘No Call’’ if the model fails to unambiguously assign a prediction based on

genotypes.



Figure S6. Initial GWAS, Related to Figure 5

Imputed variants were association with pigmentation and tanning status for 217 KhoeSan individuals (107 zKhomani and 110 Nama individuals).

(A) Study design overview.

(B)Manhattan plot for pigmentation, with LD assessed and clumped using best guess genotypes fromMEGAdata (i.e., largest sample size). LD clumps are shown

in blue for top 25 loci and labeled with closest gene for top 5 loci.

(C) QQplot for pigmentation (lGC = 1.018),

(D) LocusZoom plot for SLC24A5, among top 5 independent loci with linkage signals,

(E) Manhattan plot for tanning status,

(F) QQplot for tanning status (lGC = 1.052),

(G) LocusZoom plot near TYRP1, among top 5 independent loci with linkage signals.


